翻訳と辞書
Words near each other
・ Portello (soft drink)
・ Portelândia
・ Porten
・ Porten Pass
・ Porten Settlement, New Brunswick
・ Portencross
・ Portencross Castle
・ Portendick
・ Portengen
・ Portenko's shrew
・ Portent
・ Portentomorpha
・ Porteous
・ Porteous (store)
・ Porteous family
Porteous formula
・ Porteous Point
・ Porteous Riots
・ Porteous's tuco-tuco
・ Porteous, Mitchell and Braun Company Building
・ Porter
・ Porter & Dolly
・ Porter 'n' Dolly
・ Porter (band)
・ Porter (beer)
・ Porter (carrier)
・ Porter (college)
・ Porter (crater)
・ Porter (lunar crater)
・ Porter (Martian crater)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Porteous formula : ウィキペディア英語版
Porteous formula
In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over projective space. pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and found the polynomial in general. proved a more general version, and generalized it further.
==Statement==

Given a morphism of vector bundles ''E'', ''F'' of ranks ''m'' and ''n'' over a smooth variety, its degeneracy locus is the variety of points where it has rank at most ''k''. If all components of the degeneracy locus have the expected codimension (''m'' – ''k'')(''n'' – ''k'') then Porteous's formula states that its fundamental class is the determinant of the matrix of size ''m'' – ''k'' whose (''i'', ''j'') entry is the Chern class ''c''''n''–''k''+''j''–''i''(''F'' – ''E'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Porteous formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.